133 research outputs found

    Nitrogen deposition onto the United States and Western Europe: A synthesis of observations and models.

    Get PDF
    The documented acceleration of NH3 and NOx (NO + NO2) emissions over the last 150 years has accelerated N deposition, compromising air and water quality and altering the functioning of terrestrial and aquatic ecosystems worldwide. To construct continental-scale N budgets, we produced maps of N deposition fluxes from site-network observations for the United States and Western Europe. Increases in the rates of N cycling for these two regions of the world are large, and they have undergone profound modification of biospheric–atmospheric N exchanges, and ecosystem function. The maps are necessarily restricted to the network measured quantities and consist of statistically interpolated fields of aqueous NO3− and NH4+, gaseous HNO3 and NO2 (in Europe), and particulate NO3− and NH4+. There remain a number of gaps in the budgets, including organic N and NH3 deposition. The interpolated spatially continuous fields allow estimation of regionally integrated budget terms. Dry-deposition fluxes were the most problematic because of low station density and uncertainties associated with exchange mechanisms. We estimated dry N deposition fluxes by multiplying interpolated surface-air concentrations for each chemical species by model-calculated, spatially explicit deposition velocities. Deposition of the oxidized N species, by-products of fossil-fuel combustion, dominate the U.S. N deposition budget with 2.5 Tg of NOy-N out of a total of 3.7–4.5 Tg of N deposited annually onto the conterminous United States. Deposition of the reduced species, which are by-products of farming and animal husbandry, dominate the Western European N-deposition budget with a total of 4.3–6.3 Tg N deposited each year out of a total of 8.4–10.8 Tg N. Western Europe receives five times more N in precipitation than does the conterminous United States. Estimated N emissions exceed measured deposition in the United States by 5.3– 7.81 Tg N, suggesting significant N export or under-sampling of urban influence. In Europe, estimated emissions better balance measured deposition, with an imbalance of between −0.63 and 2.88 Tg N, suggesting that much of the N emitted in Europe is deposited there, with possible N import from the United States. The sampling network in Europe includes urban influences because of the greater population density of Western Europe. Our analysis of N deposition for both regions was limited by sampling density. The framework we present for quantification of patterns of N deposition provides a constraint on our understanding of continental biospheric–atmospheric N cycles. These spatially explicit wet and dry N fluxes also provide a tool for verifying regional and global models of atmospheric chemistry and transport, and they represent critical inputs into terrestrial models of biogeochemistry

    Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    Get PDF
    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL_Br ) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSL Br ), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2 , which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21 st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.Fil: Fernandez, Rafael Pedro. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; España. Universidad Tecnologica Nacional. Facultad Regional Mendoza. Secretaría de Ciencia, Tecnología y Postgrado; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Kinnison, Douglas E.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Lamarque, Jean Francois. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Tilmes, Simone. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas. Instituto de Química Física; Españ

    The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the Brewer–Dobson Circulation: An Analysis of MSU and SSU Data

    Get PDF
    Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the Brewer–Dobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU). While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: December–March in the Northern Hemisphere and July–October in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere. The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. M

    Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems

    Get PDF
    Widespread mobilization of nitrogen into the atmosphere from industry, agriculture, and biomass burning and its subsequent deposition have the potential to alleviate nitrogen limitation of productivity in terrestrial ecosystems, and may contribute to enhanced terrestrial carbon uptake. To evaluate the importance of the spatial distribution of nitrogen deposition for carbon uptake and to better quantify its magnitude and uncertainty NOy-N deposition fields from five different three-dimensional chemical models, GCTM, GRANTOUR, IMAGES, MOGUNTIA, and ECHAM were used to drive NDEP, a perturbation model of terrestrial carbon uptake. Differences in atmospheric sources of NOx-N, transport, resolution, and representation of chemistry, contribute to the distinct spatial patterns of nitrogen deposition on the global land surface; these differences lead to distinct patterns of carbon uptake that vary between 0.7 and 1.3 Gt C yr−1 globally. Less than 10% of the nitrogen was deposited on forests which were most able to respond with increased carbon storage because of the wide C:N ratio of wood as well as its long lifetime. Addition of NHx-N to NOy-N deposition, increased global terrestrial carbon storage to between 1.5 and 2.0 Gt C yr−1, while the “missing terrestrial sink” is quite similar in magnitude. Thus global air pollution appears to be an important influence on the global carbon cycle. If N fertilization of the terrestrial biosphere accounts for the “missing” C sink or a substantial portion of it, we would expect significant reductions in its magnitude over the next century as terrestrial ecosystems become N saturated and O3 pollution expands

    Improvement of the Prediction of Surface Ozone Concentration Over Conterminous U.S. by a Computationally Efficient Second-Order Rosenbrock Solver in CAM4-Chem

    Get PDF
    The global chemistry-climate model (CAM4-Chem) overestimates the surface ozone concentration over the conterminous U.S. (CONUS). Reasons for this positive bias include emission, meteorology, chemical mechanism, and solver. In this study, we explore the last possibility by examining the sensitivity to the numerical methods for solving the chemistry equations. A second-order Rosenbrock (ROS-2) solver is implemented in CAM4-Chem to examine its influence on the surface ozone concentration and the computational performance of the chemistry program. Results show that under the same time step size (1800 s), statistically significant reduction of positive bias is achieved by the ROS-2 solver. The improvement is as large as 5.2 ppb in Eastern U.S. during summer season. The ROS-2 solver is shown to reduce the positive bias in Europe and Asia as well, indicating the lower surface ozone concentration over the CONUS predicted by the ROS-2 solver is not a trade-off consequence with increasing the ozone concentration at other global regions. In addition, by refining the time step size to 180 s, the first-order implicit solver does not provide statistically significant improvement of surface ozone concentration. It reveals that the better prediction from the ROS-2 solver is not only due to its accuracy but also due to its suitability for stiff chemistry equations. As an added benefit, the computation cost of the ROS-2 solver is almost half of first-order implicit solver. The improved computational efficiency of the ROS-2 solver is due to the reuse of the Jacobian matrix and lower upper (LU) factorization during its multistage calculation

    Climate Change from 1850 to 2005 Simulated in CESM1(WACCM)

    Get PDF
    The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM

    Seasonal impact of biogenic very short-lived bromocarbons on lowermost stratospheric ozone between 60° N and 60° S during the 21st century

    Get PDF
    Biogenic very short-lived bromocarbons (VSLBr) currently represent ∼25 % of the total stratospheric bromine loading. Owing to their much shorter lifetime compared to anthropogenic long-lived bromine (e.g. halons) and chlorine (e.g. chlorofluorocarbons), the impact of VSLBr on ozone peaks in the lowermost stratosphere, which is a key climatic and radiative atmospheric region. Here we present a modelling study of the evolution of stratospheric ozone and its chemical loss within the tropics and at mid-latitudes during the 21st century. Two different experiments are explored: considering and neglecting the additional stratospheric injection of 5 ppt biogenic bromine naturally released from the ocean. Our analysis shows that the inclusion of VSLBr results in a realistic stratospheric bromine loading and improves the agreement between the model and satellite observations of the total ozone column (TOC) for the 1980?2015 period at mid-latitudes. We show that the overall ozone response to VSLBr at mid-latitudes follows the stratospheric evolution of long-lived inorganic chlorine and bromine throughout the 21st century. Additional ozone loss due to VSLBr is maximized during the present-day period (1990?2010), with TOC differences of −8 DU (−3 %) and −5.5 DU (−2 %) for the Southern Hemisphere and Northern Hemisphere mid-latitudes (SH-MLs and NH-MLs), respectively. Moreover, the projected TOC differences at the end of the 21st century are ∼50 % lower than the values found for the present-day period.We find that seasonal VSLBr impact on lowermost stratospheric ozone at mid-latitude is influenced by the seasonality of the heterogeneous inorganic-chlorine reactivation processes on ice crystals. Indeed, due to the more efficient reactivation of chlorine reservoirs (mainly ClONO2 and HCl) within the colder SH-ML lowermost stratosphere, the seasonal VSLBr impact shows a small but persistent hemispheric asymmetry through the whole modelled period. Our results indicate that, although the overall VSLBr-driven ozone destruction is greatest during spring, the halogen-mediated (Halogx-Loss) ozone loss cycle in the mid-latitude lowermost stratosphere during winter is comparatively more efficient than the HOx cycle with respect to other seasons. Indeed, when VSLBr are considered, Halogx-Loss dominates wintertime lowermost stratospheric ozone loss at SH-MLs between 1985 and 2020, with a contribution of inter-halogen ClOx?BrOx cycles to Halogx-Loss of ∼50 %.Within the tropics, a small (<−2.5 DU) and relatively constant (∼−1 %) ozone depletion mediated by VSLBr is closely related to their fixed emissions throughout the modelled period. By including the VSLBr sources, the seasonal Halogx-Loss contribution to lowermost stratospheric ozone loss is practically dominated by the BrOx cycle, reflecting the low sensitivity of very short-lived (VSL) bromine to background halogen abundances to drive tropical stratospheric ozone depletion. We conclude that the link between biogenic bromine sources and seasonal changes in heterogeneous chlorine reactivation is a key feature for future projections of mid-latitude lowermost stratospheric ozone during the 21st century.Fil: Barrera, Javier Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad Tecnológica Nacional; ArgentinaFil: Iglesias Suarez, Fernando. Consejo Superior de Investigaciones Científicas; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones Científicas; EspañaFil: Lamarque, Jean Francois. National Center for Atmospheric Research; Estados UnidosFil: Saiz-lopez, Alfonso. Consejo Superior de Investigaciones Científicas; Españ

    Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO_2 Injections

    Get PDF
    Injections of sulfur dioxide into the stratosphere are among several proposed methods of solar radiation management. Such injections could cool the Earth's climate. However, they would significantly alter the dynamics of the stratosphere. We explore here the stratospheric dynamical response to sulfur dioxide injections ∼5 km above the tropopause at multiple latitudes (equator, 15°S, 15°N, 30°S and 30°N) using a fully coupled Earth system model, Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)). We find that in all simulations, the tropical lower stratosphere warms primarily between 30°S and 30°N, regardless of injection latitude. The quasi-biennial oscillation (QBO) of the tropical zonal wind is altered by the various sulfur dioxide injections. In a simulation with a 12 Tg yr^(−1) equatorial injection, and with fully interactive chemistry, the QBO period lengthens to ∼3.5 years but never completely disappears. However, in a simulation with specified (or noninteractive) chemical fields, including O_3 and prescribed aerosols taken from the interactive simulation, the oscillation is virtually lost. In addition, we find that geoengineering does not always lengthen the QBO. We further demonstrate that the QBO period changes from 24 to 12–17 months in simulations with sulfur dioxide injections placed poleward of the equator. Our study points to the importance of understanding and verifying of the complex interactions between aerosols, atmospheric dynamics, and atmospheric chemistry as well as understanding the effects of sulfur dioxide injections placed away from the Equator on the QBO
    corecore